Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Genet ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374498

RESUMO

The application of genomic technologies has led to unraveling of the complex genetic landscape of disorders of epilepsy, gaining insights into their underlying disease mechanisms, aiding precision medicine, and providing informed genetic counseling. We herein present the phenotypic and genotypic insights from 142 Indian families with epilepsy with or without comorbidities. Based on the electroclinical findings, epilepsy syndrome diagnosis could be made in 44% (63/142) of the families adopting the latest proposal for the classification by the ILAE task force (2022). Of these, 95% (60/63) of the families exhibited syndromes with developmental epileptic encephalopathy or progressive neurological deterioration. A definitive molecular diagnosis was achieved in 74 of 142 (52%) families. Infantile-onset epilepsy was noted in 81% of these families (61/74). Fifty-five monogenic, four chromosomal, and one imprinting disorder were identified in 74 families. The genetic variants included 65 (96%) single-nucleotide variants/small insertion-deletions, 1 (2%) copy-number variant, and 1 (2%) triplet-repeat expansion in 53 epilepsy-associated genes causing monogenic disorders. Of these, 35 (52%) variants were novel. Therapeutic implications were noted in 51% of families (38/74) with definitive diagnosis. Forty-one out of 66 families with monogenic disorders exhibited autosomal recessive and inherited autosomal dominant disorders with high risk of recurrence.

2.
Eur J Hum Genet ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114583

RESUMO

The contribution of de novo variants as a cause of intellectual disability (ID) is well established in several cohorts reported from the developed world. However, the genetic landscape as well as the appropriate testing strategies for identification of de novo variants of these disorders remain largely unknown in low-and middle-income countries like India. In this study, we delineate the clinical and genotypic spectrum of 54 families (55 individuals) with syndromic ID harboring rare de novo variants. We also emphasize on the effectiveness of singleton exome sequencing as a valuable tool for diagnosing these disorders in resource limited settings. Overall, 46 distinct disorders were identified encompassing 46 genes with 51 single-nucleotide variants and/or indels and two copy-number variants. Pathogenic variants were identified in CREBBP, TSC2, KMT2D, MECP2, IDS, NIPBL, NSD1, RIT1, SOX10, BRWD3, FOXG1, BCL11A, KDM6B, KDM5C, SETD5, QRICH1, DCX, SMARCD1, ASXL1, ASXL3, AKT3, FBN2, TCF12, WASF1, BRAF, SMARCA4, SMARCA2, TUBG1, KMT2A, CTNNB1, DLG4, MEIS2, GATAD2B, FBXW7, ANKRD11, ARID1B, DYNC1H1, HIVEP2, NEXMIF, ZBTB18, SETD1B, DYRK1A, SRCAP, CASK, L1CAM, and KRAS. Twenty-four of these monogenic disorders have not been previously reported in the Indian population. Notably, 39 out of 53 (74%) disease-causing variants are novel. These variants were identified in the genes mainly encoding transcriptional and chromatin regulators, serine threonine kinases, lysosomal enzymes, molecular motors, synaptic proteins, neuronal migration machinery, adhesion molecules, structural proteins and signaling molecules.

3.
FASEB J ; 37(8): e23116, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37498235

RESUMO

Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.


Assuntos
Senilidade Prematura , Laminopatias , Humanos , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Proteostase , Núcleo Celular/metabolismo , Laminas/genética , Laminas/metabolismo , Laminopatias/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mutação , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo
4.
Am J Med Genet A ; 191(8): 2175-2180, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337996

RESUMO

Heterozygous disease-causing variants in BCL11B are the basis of a rare neurodevelopmental syndrome with craniofacial and immunological involvement. Isolated craniosynostosis, without systemic or immunological findings, has been reported in one of the 17 individuals reported with this disorder till date. We report three additional individuals harboring de novo heterozygous frameshift variants, all lying in the exon 4 of BCL11B. All three individuals presented with the common findings of this disorder i.e. developmental delay, recurrent infections with immunologic abnormalities and facial dysmorphism. Notably, craniosynostosis of variable degree was seen in all three individuals. We, thus add to the evolving genotypes and phenotypes of BCL11B-related BAFopathy and also review the clinical, genomic spectrum along with the underlying disease mechanisms of this disorder.


Assuntos
Craniossinostoses , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Fatores de Transcrição/genética , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Mutação da Fase de Leitura , Fenótipo , Proteínas Supressoras de Tumor/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Repressoras/genética
5.
J Pediatr Genet ; 12(1): 58-63, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36684549

RESUMO

Knobloch syndrome (KS) is an autosomal recessive disorder caused by biallelic pathogenic variants in COL18A1 . KS clinically manifests with the typical eye findings (high myopia, vitreoretinal degeneration, retinal detachment, and lens subluxation), variable neurological findings (occipital encephalocele, polymicrogyria, cerebellar malformations, epilepsy, and intellectual disability), and the other uncommon clinical manifestations. Literature review of all KS patients (source PubMed) was done with special reference to cerebellar abnormalities. Here, we report two siblings with typical KS with posterior fossa malformations and novel cerebellar midline cleft abnormality analyzed by whole exome sequencing. Known pathogenic homozygous variant c.2908C > T; (p.Arg970Ter) in exon 26 of COL18A1 was found as a cause for KS. These two siblings presented with early-onset severe ocular manifestations, facial dysmorphism, and variable central nervous system manifestations along with novel cerebellar midline cleft abnormality. The presence or absence of structural brain malformations and genotypes does not absolutely predict cognitive functions in KS patients. However, the presence of posterior fossa abnormality may be predictive for the development of ataxia in later life and needs further studies.

6.
Aging Cell ; 21(11): e13688, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36225129

RESUMO

Deleterious, mostly de novo, mutations in the lamin A (LMNA) gene cause spatio-functional nuclear abnormalities that result in several laminopathy-associated progeroid conditions. In this study, exome sequencing in a sixteen-year-old male with manifestations of premature aging led to the identification of a mutation, c.784G>A, in LMNA, resulting in a missense protein variant, p.Glu262Lys (E262K), that aggregates in nucleoplasm. While bioinformatic analyses reveal the instability and pathogenicity of LMNAE262K , local unfolding of the mutation-harboring helical region drives the structural collapse of LMNAE262K into aggregates. The E262K mutation also disrupts SUMOylation of lysine residues by preventing UBE2I binding to LMNAE262K , thereby reducing LMNAE262K degradation, aggregated LMNAE262K sequesters nuclear chaperones, proteasomal proteins, and DNA repair proteins. Consequently, aggregates of LMNAE262K disrupt nuclear proteostasis and DNA repair response. Thus, we report a structure-function association of mutant LMNAE262K with toxicity, which is consistent with the concept that loss of nuclear proteostasis causes early aging in laminopathies.


Assuntos
Senilidade Prematura , Laminopatias , Masculino , Humanos , Adolescente , Lamina Tipo A/genética , Senilidade Prematura/genética , Proteostase/genética , Mutação/genética
7.
Eur J Hum Genet ; 29(12): 1774-1780, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34276053

RESUMO

Multilocus disease-causing genomic variations (MGVs) and multiple genetic diagnoses (MGDs) are increasingly being recognised in individuals and families with Mendelian disorders. This can be mainly attributed to the widespread use of genomic tests for the evaluation of these disorders. We conducted a retrospective study of families evaluated over the last 6 years at our centre to identify families with MGVs and MGDs. MGVs were observed in fourteen families. We observed five different consequences: (i) individuals with MGVs presenting as blended phenotypes (ii) individuals with MGVs presenting with distinct phenotypes (iii) individuals with MGVs with age-dependent penetrance (iv) individuals with MGVs with one phenotype obscured by another more predominant phenotype (v) two distinct phenotypes in different individuals in families with MGVs. Consanguinity was present in eight (8/14, 57.1%) of them. Thirteen families had two Mendelian disorders and one had three Mendelian disorders. The risk of recurrence of one or more conditions in these families ranged from 25% to 75%. Our findings underline the importance of the role of a clinical geneticist in systematic phenotyping, challenges in genetic counselling and risk estimation in families with MGVs and MGDs, especially in highly inbred populations.


Assuntos
Aconselhamento Genético/métodos , Doenças Genéticas Inatas/genética , Testes Genéticos/métodos , Herança Multifatorial , Penetrância , Polimorfismo Genético , Feminino , Doenças Genéticas Inatas/diagnóstico , Humanos , Masculino , Linhagem , Locos de Características Quantitativas
8.
Plants (Basel) ; 10(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923758

RESUMO

Storage ability of trifoliate yam (Dioscorea dumetorum) is restricted by a severe post-harvest hardening (PHH) phenomenon, which starts within the first 24 h after harvest and renders tubers inedible. Previous work has only focused on the biochemical changes affecting PHH in D. dumetorum. To the best of our knowledge, the candidate genes responsible for the hardening of D. dumetorum have not been identified. Here, transcriptome analyses of D. dumetorum tubers were performed in yam tubers of four developmental stages: 4 months after emergence (4MAE), immediately after harvest (AH), 3 days after harvest (3DAH) and 14 days after harvest (14DAH) of four accessions (Bangou 1, Bayangam 2, Fonkouankem 1, and Ibo sweet 3) using RNA-Seq. In total, between AH and 3DAH, 165, 199, 128 and 61 differentially expressed genes (DEGs) were detected in Bayangam 2, Fonkouankem 1, Bangou 1 and Ibo sweet 3, respectively. Functional analysis of DEGs revealed that genes encoding for CELLULOSE SYNTHASE A (CESA), XYLAN O-ACETYLTRANSFERASE (XOAT), CHLOROPHYLL A/B BINDING PROTEIN1, 2, 3, 4 (LHCB1, LHCB2, LHCB3, and LCH4) and an MYB transcription factor were predominantly and significantly up-regulated 3DAH, implying that these genes were potentially involved in the PHH as confirmed by qRT-PCR. A hypothetical mechanism of this phenomenon and its regulation has been proposed. These findings provide the first comprehensive insights into gene expression in yam tubers after harvest and valuable information for molecular breeding against the PHH.

9.
Am J Med Genet A ; 185(9): 2756-2765, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33749989

RESUMO

This study includes previous reports of four affected individuals from two unrelated families with hedgehog acyl-transferase (HHAT)-related multiple congenital anomaly syndrome. Microcephaly, small cerebellar vermis, holoprosencephaly, agenesis of corpus callosum, intellectual disability, short stature, skeletal dysplasia, microphthalmia-anophthalmia, and sex reversal constitute the phenotypic spectrum of this condition with variable expression. We report an additional family with three affected conceptuses: two abortuses and one living proband. We did proband-parents trio exome sequencing and identified a biallelic in-frame deletion c.365_367del; (p.Thr122del) in exon 5 of HHAT. With this report, we delineate the phenotype and allelic heterogeneity of the HHAT-related multiple congenital anomaly syndrome.


Assuntos
Anormalidades Múltiplas/patologia , Aciltransferases/genética , Anormalidades Congênitas/patologia , Doenças Fetais/patologia , Feto/patologia , Deleção de Genes , Anormalidades Múltiplas/genética , Adulto , Criança , Pré-Escolar , Anormalidades Congênitas/genética , Feminino , Doenças Fetais/genética , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Adulto Jovem
10.
Transl Psychiatry ; 11(1): 1, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33414379

RESUMO

PIDD1 encodes p53-Induced Death Domain protein 1, which acts as a sensor surveilling centrosome numbers and p53 activity in mammalian cells. Early results also suggest a role in DNA damage response where PIDD1 may act as a cell-fate switch, through interaction with RIP1 and NEMO/IKKg, activating NF-κB signaling for survival, or as an apoptosis-inducing protein by activating caspase-2. Biallelic truncating mutations in CRADD-the protein bridging PIDD1 and caspase-2-have been reported in intellectual disability (ID), and in a form of lissencephaly. Here, we identified five families with ID from Iran, Pakistan, and India, with four different biallelic mutations in PIDD1, all disrupting the Death Domain (DD), through which PIDD1 interacts with CRADD or RIP1. Nonsense mutations Gln863* and Arg637* directly disrupt the DD, as does a missense mutation, Arg815Trp. A homozygous splice mutation in the fifth family is predicted to disrupt splicing upstream of the DD, as confirmed using an exon trap. In HEK293 cells, we show that both Gln863* and Arg815Trp mutants fail to co-localize with CRADD, leading to its aggregation and mis-localization, and fail to co-precipitate CRADD. Using genome-edited cell lines, we show that these three PIDD1 mutations all cause loss of PIDDosome function. Pidd1 null mice show decreased anxiety, but no motor abnormalities. Together this indicates that PIDD1 mutations in humans may cause ID (and possibly lissencephaly) either through gain of function or secondarily, due to altered scaffolding properties, while complete loss of PIDD1, as modeled in mice, may be well tolerated or is compensated for.


Assuntos
Proteína Adaptadora de Sinalização CRADD , Deficiência Intelectual , Animais , Proteína Adaptadora de Sinalização CRADD/genética , Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/genética , Caspase 2/metabolismo , Domínio de Morte , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Células HEK293 , Humanos , Índia , Deficiência Intelectual/genética , Camundongos , Mutação
11.
Am J Med Genet A ; 182(10): 2226-2229, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33043633

RESUMO

Trichothiodystrophy, non-photosensitive type 4 (TTD4), is a rare genetic disorder with an autosomal recessive mode of inheritance. It is characterized by coarse and brittle hair, anomalies of the tissues derived from the neuro-ectoderm (skin, hair, and nails) and intellectual disability. We herein report two male siblings aged 13 and 16 years with TTD4 and a known homozygous pathogenic variant, c.229del [p.(Arg77Glyfs*76)] in exon 1 of MPLKIP (NM_138701.3). We herein highlight the clinical and molecular findings of the first reported case of TTD4 in probands of Indian ethnicity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doenças do Cabelo/genética , Deficiência Intelectual/genética , Síndromes de Tricotiodistrofia/genética , Adolescente , Éxons/genética , Predisposição Genética para Doença , Cabelo/patologia , Doenças do Cabelo/patologia , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Unhas/patologia , Pele/patologia , Síndromes de Tricotiodistrofia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...